If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-2t-56=0
a = 3; b = -2; c = -56;
Δ = b2-4ac
Δ = -22-4·3·(-56)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-26}{2*3}=\frac{-24}{6} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+26}{2*3}=\frac{28}{6} =4+2/3 $
| 28-5x=17+6x | | 7x+2(-2x-10)=-38 | | 7x-11=3x-43 | | 4-1/2m=15 | | 7/x-4=3 | | 8r+-6r+3r=10 | | 5/3x-1/3(x+2/3x)=10 | | 6x+7(-2x+4)=108 | | h+h+13=236 | | x-2/6=2-x | | 6=3/x+2 | | 4×7=30-n | | 6x+7(-2+4)=108 | | 2/3x+3=2/7+4 | | -2+.60w=10 | | -32-3/5×f=-17 | | -2x+3(3x+16)=97 | | 3(x+2)=13x-24 | | 4x(6+3)/12+6(x+3)=0 | | 2(g-3)-2=6 | | 4.1=x/3+3.4 | | 7/x=-15 | | 7x-2(-4x-10)=-115 | | 4(7x-5)+12=104 | | 9/x=-12 | | -2x+2(6x-12)=36 | | -3(v-18)=0 | | -8+v=-2v-8 | | |8x|-2=54 | | 5x-14=66 | | 2x^2-5x+6.25=10 | | 5r+5=6r-12 |